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Abstract Linkage disequilibrium (LD) is defined as a

stochastic dependence between alleles at two or more loci.

Although understanding LD is important in the study of the

genetics of many species, little attention has been paid on

how a covariance structure between many loci distributed

across the genome should be represented. Given that bio-

logical systems at the cellular level often involve gene

networks, it is appealing to evaluate LD from a network

perspective, i.e., as a set of associated loci involved in a

complex system. We applied a Markov network (MN) to

study LD using data on 1,279 markers derived from 599

wheat inbred lines. The MN attempts to account for asso-

ciation between two markers, conditionally on the

remaining markers in the network model. In this study, the

recovery of the structure of a LD network was done

through two variants of pseudo-likelihoods subject to an L1

penalty on the MN parameters. It is shown that, while the

L1-regularized Markov network preserves features of a

Bayesian network (BN), the nodes in the resulting net-

works have fewer links. The resulting sparse network,

encoding conditional independencies, provides a clearer

picture of association than marginal LD metrics, and a

sparse graph eases interpretation markedly, since it

includes a smaller number of edges than a BN. Thus, an

L1-regularized sparse Markov network seems appealing for

representing conditional LD with high-dimensional geno-

mic data, where variables, e.g., single nucleotide poly-

morphism markers, are expected to be sparsely connected.

Introduction

Linkage disequilibrium (LD) is defined as a stochastic

dependence between alleles at two or more loci. Charac-

terizing the pattern and extent of LD is important for

successful fine-scale mapping of quantitative trait loci

(Meuwissen and Goddard 2000) and for genome-enabled

prediction in quantitative genetics (Meuwissen et al. 2001).

It may also provide insights into the evolutionary history

that a population has undergone. A large amount of poly-

morphic loci has been identified in recent years, thanks to

efficient high-throughput genotyping technologies. With

this type of genomic data, the resolution of LD structure

can be investigated more deeply and with greater precision.

Probabilistic graphical models (Borgelt et al. 2009)

provide a framework for assessing conditional dependen-

cies among variables graphically, as well as a means for

interpreting the underlying association structure. A Bayes-

ian network (BN) (Neapolitan 2003) is one of the most

popular such models used for constructing association

networks based on discrete random variables, and it was

applied recently in an evaluation of LD among single

nucleotide polymorphisms (SNPs) having an effect on milk

yield of Holstein cattle (Morota et al. 2012). As a proba-

bilistic graphical model, a BN shares similarities with path

analysis and structural equation models (Wright 1921a;

Haavelmo 1943). In a BN, each node represents a random
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variable, and a node is conditionally independent of its

non-descendants given its parents. A BN can greatly sim-

plify the calculation of joint probabilities and, sometimes,

it can represent causal relationships involving a target node

of interest.

A main challenge comes when high dimensional data

needs to be fed to the BN. Due to its inability to produce a

sparse graph, a BN often detects very weak genetic signals

and produces a complex network that is not amenable to

easy graphical interpretation. This limits the use of BN

with highly dimensional data, such as genome-wide SNPs

derived from high-throughput genotypes, so one is often

forced to reduce the number of nodes to be fed, as done in

Morota et al. (2012). However, if a main purpose is to

detect SNPs that are in moderate or high LD for use in

subsequent studies, it would seem reasonable to ‘‘kill‘‘

weak associations, while highlighting those SNPs in

noticeable LD. Given that LD is expected to decline rap-

idly as the physical distance between two loci increases,

and that pairs of loci on different chromosomes rarely show

high LD, it seems reasonable to assume sparsity in a net-

work involving a large number of loci.

The edges in a network may be either directed or

undirected. A directed network has the potential of con-

veying causal relationships, with ‘‘parental’’ nodes influ-

encing patterns or occurrence of ‘‘children’’ nodes. In

contrast, nodes are connected by edges without arrows in

an undirected network. The choice between oriented and

unoriented networks is commonly based on whether an

underlying network encodes an asymmetric or a symmetric

relationship among a set of nodes. In the context of LD, the

directionality of an underlying network is unclear since

associations among loci are typically assumed bi-direc-

tional. Therefore, undirected networks may be sensible in

the study of LD.

The r2 metric, i.e., the squared correlation between

alleles at two SNP loci, is the most commonly used mea-

sure for quantifying LD in population genetics (Hill and

Robertson 1968). An alternative is provided by what is

called a ‘‘relevance network’’ (Butte et al. 2000). This type

of network offers a simple way of measuring associations

and has been used in RNA expression analysis. In the

context of LD, the rule applied in a relevance network is

that two loci are connected if and only if the absolute value

of the pairwise correlation exceeds a pre-defined threshold.

However, a disadvantage is that both the relevance network

and r2 represent a marginal dependence structure only,

implying that pairwise association values are unconditional

on other loci, as explained later. Given that complicated

biological systems at the cellular level involve gene net-

works (Sharan and Ideker 2006), ignoring loci beyond the

pair in question may end up capturing superficial genetic

associations only. Therefore, it may be worthwhile to use

methods that also account for association between two loci,

conditionally on the remaining loci in the data. Such

methods should be suited for high-dimensional genomic

data as well.

This study illustrates an application of a novel method

for construction of a LD network in wheat that has the

following three properties: (1) provides an efficient way

of constructing a LD network from high-dimensional data

by introducing sparsity, (2) represents the resulting LD

network via nodes that are connected by undirected links,

and (3) evaluates associations between loci conditionally

on the remaining loci, as opposed to the r2 metric or the

relevance network. This article is structured as follows.

Section Methods describes the wheat data, providing an

overview of a Markov network (MN), and describes the

two methods used for constructing sparse binary Markov

networks for detecting conditional LD. Section Results

gives the results, and concluding remarks are presented in

Discussion.

Methods

Data

A wheat data set collected through the CIMMYT Global

Wheat Breeding Program including 599 inbred lines, was

used. The trait considered in this analysis was grain yield in

the first (out of 4) environment represented in the data set.

Each line was genotyped using 1,447 Diversity Array

Technology (DArT) binary markers generated by Triticarte

Pty. Ltd. Markers with a minor allele frequency (MAF)

lower than 0.05 were discarded, and missing genotypes

were imputed via random sampling of genotypes using

probabilities corresponding to the observed genotype fre-

quencies at a locus. This editing stage resulted in 1,279

markers coded as 0 or 1. More details about the data are in

Crossa et al. (2007); de los Campos et al. (2009); Crossa

et al. (2010).

Overview of Markov networks

The problem of characterizing associations among geno-

types at various loci can be casted as one of estimating a

MN structure among loci. A MN, also known as a Markov

random field, is an undirected graph G = (V, E), where V

and E are sets of nodes and edges, respectively. As opposed

to a BN, the MN does not encode causal relationships. A

MN is more suited than a BN for stating soft constraints

between random variables when a clear directionality

cannot be assumed, and it is convenient to express an

‘‘affinity’’, instead of a causal relationship (Koller and

Friedman 2009; Bishop 2006). Nodes in the MN represent
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discrete random variables xT ¼ ðx1; :::; xpÞ, and edges

convey their pairwise relationships.

In a MN, the absence of an edge between two nodes, xj

and xk, implies conditional independence, given all other

nodes (Koller and Friedman 2009). Also, if there is a link

between two nodes, this probabilistic connection holds

regardless of the presence of other links in the network.

The ‘‘pairwise’’ conditional independence property can be

represented as

pðxj; xkjx�j;�kÞ ¼ pðxjjx�j;�kÞpðxjjx�j;�kÞ

where x�j;�k denotes vector x with random variables xj and

xk removed.

A MN does not possess directed links, as opposed to a

BN, so factorizing the joint distribution as a product of

conditional probability distributions of nodes given by

parents does not hold, so special care needs to be taken.

This is achieved by decomposing the joint distribution as

products of functions of the nodes in ‘‘cliques’’. A clique is

a subset of nodes in a graph such that every pair of nodes

within a clique is connected by some edge; a maximum

clique is defined as the clique having the largest number of

nodes (Bishop 2006) and there can be more than one

maximum clique. Knowing the maximum clique of a graph

is sufficient for factorizing the joint distribution, since any

subset of the nodes in the maximum clique are redundant.

Let C be a set of cliques in a certain graph structure G, and

Xc be the set of variables in clique c. The representation of

the joint distribution is:

pðXÞ ¼ 1

Z

Y

C2G

/cðXcÞ ð1Þ

where / is called a ‘‘clique potential’’ and Z is a

normalizing constant defined by

Z ¼
X

c

Y

C2G

/cðXcÞ:

Clique potentials are positive functions that do not

necessarily represent probabilities or conditional

probabilities. Hence, to guarantee that the sum of

probabilities is equal to 1, we need to explicitly divide

by a normalization factor (Z), to ensure that p(X) behaves

as a probability distribution. Equation (1) is given by the

Hammersley–Clifford theorem (Hammersley and Clifford

1971; Clifford 1990) stating that if p(X) is a positive

distribution over X ¼ xi; . . .; xn, and if G is a Markov

network over X, then p(X) factorizes over cliques in G

(Koller and Friedman 2009); this is called a Gibbs

distribution. Here, a positive distribution means that for

all outcomes ðX ¼ xi; . . .; xnÞ such that X 6¼ ; (empty set),

we have p(X) [ 0. If joint distribution p(X) is a Gibbs

distribution relative to to the MN G, it can be decomposed

into a product over cliques in the network structure (Koller

and Friedman 2009; Newton 1999).

Pseudo-likelihood based regression

with p regularization parameters

The objective here is to reconstruct a network from the

covariance structure among markers. The data for each

individual consists of a random vector xT ¼ ðx1; :::; xpÞT
with p binary markers, such that element xj 2 ð0; 1Þ
denotes a binary genotype at locus j (1 B j B p). We

assume that the distribution of random vectors is governed

by an unknown MN. For simplicity, we focus on a pairwise

MN in this analysis, which is a special case of Markov

networks where cliques are over a single node or pairs of

nodes (Koller and Friedman 2009). Therefore, in a pairwise

MN, we factorize equation (1) such that only a set of node

potentials / (xj) or a set of link potentials / (xj, xk) get

involved in a model. The joint distribution is given by

multiplication of these node and link potential functions.

A pairwise MN for binary variables is also known as an

Ising model, which derives from the statistical mechanics

literature (Koller and Friedman 2009; Hastie et al. 2009). It

models a system of interacting atoms, where each atom is a

binary-valued random variable xj 2 ð�1; 1Þ; these values

describe the direction of the atom spin. In practice, it is

common to work in terms of log-linear models, and in this

framework, equation (1) is represented as

pðXÞ ¼ 1

Z
exp

Xk

q¼1

hq/qðXqÞ
" #

ð2Þ

where (X1, ..., Xk) are cliques in the MN; (/ 1(X1), ..., /

k(Xk)) are sets of clique potentials, and (h1, ..., hk) are

parameters (weights) of the log-linear models, one for each

clique. This model allows a compact representation of

various distributions, ensuring that all probabilities are

positive (Koller and Friedman 2009). In a pairwise MN, we

limit the maximum clique size up to ’two’ in Eq. (2), so

only ’main effects’ of each node and all ’pairwise inter-

actions’ between nodes are included. Fitting this log-linear

model is equivalent to a model selection problem

addressing which pairs of nodes (clique size of two) should

be included in the model. If the clique of size two corre-

sponding to the jth and kth nodes is included, these nodes

will be connected by a link in the network.

Our aim is to estimate the underlying LD network from

the p binary markers spanning across the wheat genome,

with their joint distribution specified by some unknown

MN. In the context of a LD network, each node represents

a marker, and lack (presence) of an edge between two

markers suggests conditional independence (dependence),

given all other markers. We estimate the MN parameters
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represented in a Hp�p matrix, by maximizing a log-likeli-

hood. For a given data point (inbred line), the joint distri-

bution of marker vector x in the log-linear model has the

form (Hastie et al. 2009)

f ðx1; :::; xpÞ ¼
1

WðHÞ exp
Xp

j¼1

hj;jxj þ
X

1� j\k� p

hj;kxjxk

 !

ð3Þ

The first term in the exponential function accounts for

the ’main effect’ of binary marker xj (node potential) and

the second term accounts for ’interaction effects’ between

pairs of binary markers xj and xk (link potential), and hj,j or

hj,k are elements of H. In the denominator, WðHÞ is the

normalization constant (partition function), that is

Z ¼ WðHÞ ¼
X

x20;1

exp
Xp

j¼1

hj;jxj þ
X

1� j\k� p

hj;kxjxk

 !

This partition function guarantees that the sum of all prob-

abilities adds up to one over the sample space. A difficulty is

that computation of the partition function requires evaluation

of many terms in the outer sum. For instance, for p variables

each having k states, evaluation of the partition function

involves a sum over kp elements; in the wheat data, k = 2,

p = 1,279, resulting in 21,279 terms. This, in general, makes

computation of the partition function itself and of its deriv-

atives infeasible. A number of authors have proposed

approximation methods to overcome this challenge.

Meinshausen and Bühlmann (2006) proposed a pseudo-

likelihood based technique for finding a high-dimensional

Gaussian network structure via regressing each variable

(e.g., a marker) on the rest of the variables. An application

in the context of gene regulatory networks can be found in

Krämer et al. (2009). In this framework, construction of a

LD network can be casted as a p-regressions problem, and

the network structure is recovered from the sparsity pattern

of the estimated regression coefficients. The least-squares

estimates of the coefficients of the linear regression of

marker j on all other markers are

b̂�j ¼ argmin
Xn

i¼1

jjXj � X�jb
�jjj2

¼ ðXT
�jX�jÞ�1

XT
�jXj

ð4Þ

where b̂�j ¼ ð ^b j
1; . . .b̂ j

j�1; b̂
j
jþ1 � � � b̂ j

p) is the (p - 1) 9 1

vector of estimates of the regression of marker j on all other

markers, Xj is the n 9 1 vector of genotypes for the jth

marker, and X-j is the resulting n 9 (p - 1) genotype

matrix after removing the jth marker from Xn 9 p.

Subsequently, all b̂�j (j ¼ 1; 2; . . .; p) are combined

together to form a (p 9 p) matrix Ĥ of estimates,

obtained by placing b̂�j in the jth row of H, with its Hj;j

element set to zero. Thus, the ‘‘total’’ objective function is

comprised of the sum of the log-likelihoods from the p

regressions. For example, with p markers, the estimated

MN parameter Ĥ in (3) takes the form:

Ĥ ¼

0 b̂�1
2 ; . . . ; b̂�1

p�1 b̂�1
p

b̂�2
1 0 . . . ; b̂�2

p�1 b̂�2
p

..

.
. . . ; 0 . . . ; ..

.

b̂�ðp�1Þ
1 . . . ; b̂�ðp�1Þ

p�2 0 b̂�ðp�1Þ
p

b̂�p
1 . . . ; b̂�p

p�2 b̂�p
p�1 0

2
66666664

3
77777775

The procedure given above involves performing a series

of p regressions, where p is the total number of markers

considered. In the n \\ p setting that is common in genomic

data (n = 599, p = 1,279 in the wheat data), however, this

regression framework above is inappropriate and a

regularized regression approach is needed. Meinshausen

and Bühlmann (2006) employed the least absolute shrinkage

and selection operator (Lasso) (Tibshirani 1996), which is a

common choice for high-dimensional regression models,

because it can introduce sparsity, i.e., each marker would

eventually have a small number of edges.

The analogy between the method of Meinshausen and

Bühlmann (2006) and a sparse binary MN was proposed by

Ravikumar et al. (2010), but using a generalized linear

model instead. The pseudo-likelihood based on the ’local’

conditional likelihood associated with each binary marker

can be represented as:

lðHÞ ¼
Yn

i¼1

Yp

j¼1

pxi;j

i;j ð1� pi;jÞ1�xi;j ð5Þ

where pi,j is the conditional probability that xi,j = 1, given

all other markers (Ravikumar et al. 2010; Guo et al. 2010);

i denotes individual (wheat line) and j indicates a given

marker. Using a logistic link function,

pi;j ¼ Pðxi;j ¼ 1jxi;k; k 6¼ j; hj;k; 1� k� pÞ

¼
expðhj;j þ

P
k 6¼j hj;kxi;kÞ

1þ expðhj;j þ
P

k 6¼j hj;kxi;kÞ

This is a logistic regression where the jth marker is the

response variable and the remaining markers are

covariates. Equation (5) can be rewritten as

lðHÞ ¼
Yn

i¼1

Yp

j¼1

pi;j

1� pi;j

� �xi;j

ð1� pi;jÞ

¼
Yn

i¼1

Yp

j¼1

exp hj;j þ
X

k 6¼j

hj;kxi;k

 ! !xi;j

1þ exp hj;j þ
X

k 6¼j

hj;kxi;k

 ! !�1

ð6Þ
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Taking the logarithm of Eq. (6) gives

logðlðHÞÞ ¼
Xp

j¼1

Xn

i¼1

xi;j hj;j þ
X

k 6¼j

hj;kxi;k

 !"

� log 1þ exp hj;j þ
X

k 6¼j

hj;kxi;k

 ! !#

Adding an L1 penalty term to the above equation, the

penalized log-likelihood function to be optimized with

respect to H becomes

max
Xp

j¼1

Xn

i¼1

xi;j hj;j þ
X

k 6¼j

hj;kxi;k

 !"(

� log 1þ exp hj;j þ
X

k 6¼j

hj;kxi;k

 !( )#
� kj

X

k 6¼j

jhj;kj
)

where kj is the regularization parameter for the jth marker;

note that hj;jðj ¼ 1; . . .; pÞ is not penalized. Ravikumar

et al. (2010) performed p separate logistic regressions

while imposing p different sparsity constraints through L1

regularization on each regression. This means that

construction of a MN on a graph G is equivalent to

recovering a neighborhood set for the jth variable, for all

j 2 V . The neighborhood set of the jth variable is defined as

all variables (except the jth one) that are not shrunken to

zero. The authors showed that if sample size n grows faster

than d3log(p), where d is the maximum neighborhood size

in the network, this leads to asymptotically consistent

estimates of parameters as well as to model selection.

The resulting matrix of neighborhood estimates Ĥ is not

necessary symmetric. Coefficients hj,k and hk,j may have a

different value or sign, so an additional step is needed to

induce symmetry. Ravikumar et al. (2010) proposed fol-

lowing two simple rules

max rule : ĥj;k ¼
ĥj;k if jĥj;kj[ jĥk;jj
ĥk;j if jĥj;kj � jĥk;jj

(

min rule : ĥj;k ¼
ĥj;k if jĥj;kj\jĥk;jj
ĥk;j if jĥj;kj � jĥk;jj

(
ð7Þ

In our analysis, the final H was constructed using a

slightly modified version of the min rule in equation (7)

according to Krämer et al. (2009). If the sign of ĥj;k is not

equal to that of ĥk;j, both elements are set to zero. Further,

we took

~H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĥ � ĤT

q

where Ĥ � ĤT is the Hadamard (Schur) product, or ele-

ment-by-element multiplication and the square root oper-

ator applies to all elements of the product. This is viewed

as an ’OR’ rule, i.e., markers xj and xk are considered

independent if ĥj;k or ĥk;j are zero. Any element hij [ 1 was

forced to one. The MN parameter H was estimated by the

following cyclic coordinate descent algorithm.

Logistic Lasso regression via a cyclic coordinate

descent algorithm: In a linear regression setting, the

response variable is the jth marker, and the predictors are

the remaining j - 1 markers. In ordinary least-squares, the

solution is as (4), but in a Lasso setting, with the jth marker

as response variable, one needs to find

ĥ�j ¼ argminh

Xn

i¼1

xi;j �
Xp

k 6¼j

hj;kxi;k

 !2

þkðhÞ

where xi,j be the genotype for response marker j observed in

individual i, which takes values 0 or 1, and k is the regular-

ization parameter applied to all regressions on markers other

than j. The algorithm applied in this study was cyclic coor-

dinate descent (CCD) (Friedman et al. 2010).

The k parameter plays a central role on the degree of

graph sparsity, and it needs to be chosen for each of the p

regressions. CCD first searches for the smallest kmax that

shrinks every coefficient to zero. Then it produces a

decreasing sequence of values from kmax to kmin. In this

study, kmin was chosen such that kmin ¼ �kmax, with � set to

0.01. Computation was carried out in the R environment

via the glmnet R package (Friedman et al. 2010).

A major advantage of this method is that computation of

the partition function is not needed, and it leads to efficient

estimation of the edge set E. The disadvantage is that it

does not optimize the log-likelihood jointly, so that p dif-

ferent regularization parameters need to be tuned. This p

individual Lasso logistic regressions method only finds the

elements of hi, j that are present or absent, instead of

estimating H fully. Thus, this method can be viewed as an

approximation to full maximum penalized likelihood

(Hastie et al. 2009).

Pseudo-likelihood based regression with a single

regularization parameter

Other methods, instead of trying to capture a pattern of

zeros in H via separate p regressions, aim to optimize

jointly over H: Under the assumption that the marker

genotypes follow a Gaussian distribution, this can be

achieved because the objective function has a closed form

(Friedman et al. 2008; Peng et al. 2009). For instance, the

Graphical Lasso (Friedman et al. 2008) produces a sparse

MN in an appealing manner. It gives penalized maximum

likelihood estimates of H, and it has been shown that the

CCD algorithm can be incorporated efficiently. An illus-

tration of this method with a gene regulatory network is in

Menéndez et al. (2010).
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In contrast, in binary Markov networks, optimizing the

corresponding log-likelihood is very challenging because

the likelihood (partition function) has no closed form.

Various methods have been proposed to approximate the

partition function (Guo et al. 2010; Lin et al. 2009; Kolar

and Xing 2008; Höfling and Tibshirani 2009; Wang et al.

2011), and attempts have been made to achieve exact

minimization of a binary-valued L1-penalized log-likeli-

hood (Lin et al. 2009; Höfling and Tibshirani 2009; Lee

et al. 2006). Höfling and Tibshirani (2009) attempted to

directly extend the Graphical Lasso to a binary response;

however, they discovered that computing was much slower

than for a Gaussian Graphical Lasso. Instead, they sug-

gested to approximate the full penalized log-likelihood

through repeated iteration of pseudo-likelihood functions

(Besag 1975), which is analogous to Ravikumar et al

(2010). A main difference with Ravikumar et al (2010) is

that one does not perform p independent logistic regres-

sions, but optimizes jointly over all elements of H at the

same time; a single regularization parameter is needed to

control the overall sparsity of the resulting network. Fur-

thermore, this ensures symmetry of Ĥ, so no extra steps are

required to produce a matrix that is symmetric.

The log-likelihood associated with equation (3) for all n

observations is given by

lðHÞ ¼
Xn

i¼1

log f ðxi1; :::; xipÞ

¼
Xn

i¼1

Xp

j¼1

hj;jxij þ
X

1� j\k� p

hj;kxijxik

 !

� n logðWðHÞÞ

ð8Þ

Now, adding the L1 penalty to equation (8) yields the

objective function (Höfling and Tibshirani 2009)

Xn

i¼1

log f ðx1; :::; xpÞ � njjS �Hjj1 ð9Þ

where S = 2R - diag(R), R is a p 9 p lower triangular

matrix of containing the penalty parameters, • is the

Hadamard product, and jjS �Hjj1 is the penalty term in the

form of an L1 norm. This implies that all off-diagonal

elements have the same entry k, without penalty for

diagonal elements. A local quadratic Taylor expansion of

the log-likelihood around HðmÞ, where m is a step of the

algorithm yields (Höfling and Tibshirani 2009)

fHðmÞðHÞ ¼ C þ
X

j� k

ol

ohjk

ðhjk � hðmÞjk Þ þ
1

2

o2l

ðohjkÞ2
ðhjk

� hðmÞjk Þ
2 � njjS �Hjj1 ð10Þ

where C is a constant; ol
ohjk

is the first derivative of lðHÞ
with respect to hjk is the second derivative of lðHÞ,

employed to form a diagonal Hessian which allows less

expensive computation. If equation (10) is set to zero, the

solution is soft thresholding (Hastie et al. 2009; Höfling

and Tibshirani 2009) because the Hessian is diagonal,

leading to

ĥjk ¼ signð~hjkÞ j~hjkj �
sjk

o2l

ðohjkÞ2

0
@

1
A

þ

where sjk is the appropriate element of S, and ~hjk is the

solution from the unpenalized version of lðHÞ (obtained

with the Newton–Raphson method) and defined as

~hjk ¼ hðmÞjk �
o2l

ðohjkÞ2

 !�1
ol

ohjk

� �

The soft thresholding operator j~hjkj � sjk=
o2l

ðohjkÞ2
� �

þ

returns j~hjkj � sjk=
o2l

ðohjkÞ2
if j~hjkj[ sjk=

o2l

ðohjkÞ2
, and zero

otherwise. Therefore, it shrinks j~hjkj by the amount in the

second term, or sets the amount to zero. The value at the

next iteration, Hðmþ1Þ, can be found by performing a

backtracking line search between Ĥ and HðmÞ which

decides a search direction and how far to move along that

direction. The pseudocode for the algorithm is shown in

Table 1. The computation was carried out here via the

BMN R package (Höfling and Tibshirani 2009).

Reconstruction of the network

Two implementations of an L1-regularized MN based on

Ravikumar et al. (2010) and Höfling and Tibshirani (2009)

were used in this study. These two methods yield a H
matrix derived from a sparse estimator containing many

zeros. Since weak associations are shrunk toward zero, this

sparse matrix does not require use of pre-assigned thresh-

olds, or to conduct a series of multiple testings to assess

whether an association is significant enough or not. The

procedure of Ravikumar et al. (2010) consisted of

Table 1 L1-penalized pseudo-likelihood algorithm

1. Initialize Hð0Þ ¼ diagðlogitðp̂ð0ÞÞÞ where p̂
ð0Þ
j ¼ 1

N

PN
i¼1 xij

2. Set m = 0

3. while no convergence is achieved

Set up quadratic approximation to equation (9) fHðmÞðHÞ using

HðmÞ

Solve for Ĥ via the soft thresholding

Find Hðmþ1Þ based on Ĥ through a backtracking line search

Set m = m ? 1

end
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connecting the jth with the kth locus with an undirected

edge if and only if the estimates of hj,k and hk,j are both not

equal to zero. In other words, if Ĥj;k ¼ 0, the corresponding

nodes are not connected, suggesting that markers xj and xk

are conditionally independent, given the other markers.

Similarly, if Ĥj;k 6¼ 0, then there is a link between the two

nodes and the markers xj and xk are conditionally depen-

dent, given the other markers. The matrix entries can be

considered as edge weights, i.e., zero means absence of an

edge, and values between zero and one mean presence of

an edge. The actual values of hj,k are of less concern here.

Subset selection and the reference models

In regression-based procedures, the regularization param-

eter determines the sparsity of the networks. To interpret

how this parameter controls the overall sparseness, the L1-

regularized MN based on CCD was applied to a subset of

30 markers having the largest effects on wheat yield.

Firstly, CCD as in Ravikumar et al. (2010) was applied to

the subset of 30 markers by specifying the k values in

advance and with cross-validation (CV). The former

involved carrying out 30 separate logistic regressions with

k sequences that differ from other. We chose six different k
points corresponding to the 10th, 15th, 25th, 40th, 50th,

and 55th k values in decreasing order from a sequence of

65 values of the regularization parameter that were evenly

spaced on the log scale, where the 1st and the 65th values

were kmax and kmin, respectively. These maximum and

minimum tuning parameters may differ for each separate

sparse logistic regression. In CV approach, rather than

fixing k as done previously, 30 CVs were performed for 30

separate L1-penalized logistic regressions. This means that

each sparse logistic regression had a unique regularization

parameter derived from the CV. We chose deviance as loss

function to use for CV and the ’cv.glmnet’ function was

applied for this purpose. Subsequently, the method from

Höfling and Tibshirani (2009) was fitted. The regulariza-

tion parameter was chosen as k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p
where p is

the number of markers and n is the number of data points,

as proposed by Ravikumar et al. (2010). For our case,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð30Þ=599

p
¼ 0:075. Lastly, the full data (1,279

markers) were fed to both methods.

This subset was chosen by fitting the Bayesian Lasso

(Park and Casella 2008; de los Campos et al. 2009)

assuming the following joint prior distribution.

pðb; r2
� ; s

2; kÞ ¼ pðbjr2
� ; s

2Þ � pðr2
� Þ � pðs2jkÞ � pðkÞ

Specifically, the prior for each of the marker coefficients bj

(j = 1, ..., p) was a normal prior with mean zero and var-

iance r2
�s

2
j ; a scaled inverted Chi-square distribution with

scale parameter S� ¼ 0:5 and degrees of freedom df� ¼ 1

was assigned to the residual variance r2
� ; the prior for the

scale parameter sj
2 was an exponential distribution; and a

beta distribution with two shape parameters a1 = 1.2 and

a2 = 1.2 spanning the range [0,500] was chosen for k.

After discarding 30,000 samples as burn-in, 50,000 sam-

ples were used to compute the posterior means of the

marker effects with a thinning rate of 10 using the BLR R

package (Pérez et al. 2010).

For comparison purposes, and to obtain a ’reference

model’, the same subset of markers was fed to a BN and

was studied with the r2 metric. The algorithm used here for

learning the BN was IAMB (Incremental Association

Markov Blanket) (Tsamardinos et al. 2003). This method

was used for inferring the network structure of SNP

markers in Holstein cattle (Morota et al. 2012). It is based

on a constraint-based algorithm and estimates conditional

independencies through a series of hypothesis tests. The

type I error rate was set to 0.05 for Pearson’s v2 conditional

independence tests. The R package bnlearn (Scutari 2010)

was used to learn the BN structure.

Results

The result of applying CCD as in Ravikumar et al. (2010)

to the subset of 30 markers selected by the Bayesian Lasso

is shown in Fig. 1, as rendered by igraph (Csardi and

Nepusz 2006). The nodes labeled 0–29 denote the top 30

markers and a lack of an edge between two nodes indicates

conditional independence. As shown in Fig. 1, the larger k
values (e.g., the 10th and 15th values of the sequences) led

to sparser networks. The number of edges detected in the

networks examined were 2, 4, 11, 29, 46, and 48 for the k
values in decreasing order of magnitude.

Figure 2 is a network based on a tenfold CV. Although

it is not straightforward to identify the k values used since

this involved 30 CVs for each of the 30 markers as

response, the sparseness of this network (18 edges) resulted

from the 25th and 40th k in the sequence given above.

In Fig. 3, the result obtained with Höfling and Tibshirani

(2009) is presented. This method, which requires only one

regularization parameter k = 0.075, captured four edges.

These edges were also captured in Fig. 2, e.g., markers 10

and 19 were found to be conditionally dependent, given

rest of the markers.

Figure 4 displays the resulting BN used as reference.

It was more dense than the network constructed through

the CV based L1-regularized binary graphical model

(Fig. 2), and the number of edges was exactly twice, i.e.,

36 edges.

The second reference benchmark was based on the pair-

wise correlations among the top 30 markers, as measured by

the r2 metric. The heatmap in Fig. 5 shows the abundant
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pairwise LD present in the inbred wheat lines analyzed in this

study. Comparison between the L1-regularized Markov

networks and this heat map brings up a clear picture of

conditional dependencies. For example, four pairs of loci

captured by two variants of the L1-regularized Markov

networks involved markers (4–8), (6–10), (10–19), and

(13–23). Their extent of LD, as measured by the r2 metric,

was 0.93, 0.42, 0.55, 0.12, respectively. It is worthwhile

noting that the pairwise correlation between loci (13–23) was

lower than for other pairs. Since there are other marker pairs

that showed higher LD ([0.4) with the r2 metric, this may

suggest that the degree of LD between pair (13–23) is

comparable to that of the three other pairs of loci, (4–8,

6–10,10–19), if one conditions on the remaining markers.

The full data (1,279 markers) were also fed to the CV

based of Ravikumar et al. (2010), and to the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p

based procedure of Höfling and Tibshirani (2009). In total,

with the CV-based method, 7,118 edges were identified out

of the lower triangular of the Ĥ matrix, with a total of

817,281 elements. The degree of sparseness was

7118/817281 & 0.0087, which indicates that most edges
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were shrunk toward zero. The degree of sparseness was

764/817281 & 0.0009 for Höfling and Tibshirani’s method,

i.e., even stronger than for the preceding procedure.

Discussion

Quantitative geneticists have exploited covariance struc-

tures among individuals (or genetic values) to evaluate

relatedness (Fisher 1918; Wright 1921b; VanRaden 2008),

estimate genetic parameters (heritability, genetic correla-

tions) and derive predictions of breeding values for many

years, e.g., (Henderson 1975). This has been achieved

using two types of genetic data: pedigrees and, more

recently, genetic markers.

On the other hand, less attention has been placed on how

to define a covariance structure between alleles at loci

distributed across the genome. Although several attempts

have been made to correct the bias of the frequency

dependent D’ and r2 metrics for LD, most of them still

suffer from small sample size biases and depend on low

minor allele frequency. Perhaps more importantly, these

metrics only capture superficial marginal correlations. This

study explored the possibility of employing graphical

models as an alternative approach in the study of LD.

Markov networks were used for the purpose above.

A MN is a graph with random variables having a distri-

bution that factors according to an undirected graph

structure G = (V, E). It allows to convey a compact rep-

resentation where associations between variables are

symmetrical, as opposed to having a directional relation-

ship. The joint distribution in a MN is parameterized in

terms of a product of potentials over a set of cliques, and

the network encodes a set of conditional independencies.

Conversion of a BN to a MN, or vice versa, is possible by

addition or deletion of edges and arrows, but this may

produce a loss of conditional independence information. In

other words, each of BN and MN are able to encode

independence properties that the other cannot. This implies
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that it is important to decide which graphical representation

is more suitable for representing the problem in question.

L1-regularized binary Markov networks were applied for

reconstructing a LD network among binary markers in

wheat. In the resulting binary MN, the LD associations were

represented as undirected graphs, with edges connecting

two loci if these were correlated, conditionally on all other

markers fed to the networks. Lack of an edge indicated that

two markers were conditionally independent, given the rest

of the markers. The standard r2 is viewed as a correlation

between two loci but conditionally on the empty set ;, with

remaining markers ignored, i.e., pretending that the data

involves just the two markers in question.

We assumed that the underlying true LD network was

sparse, and used an L1 penalty to try to recover it. We

illustrated such recovery using different variations of L1-

regularized regressions, applied to elements of the geno-

type matrix X, which were binary valued, in the inbred

wheat lines considered. Due to the properties of the L1

norm penalty, this permitted to reconstruct sparse

networks, with the regularization parameter k playing a

crucial role on the degree of sparseness of the resulting

networks. The L1-regularization approach is applicable to

the small n, large p setting, and yielded a sparse network,

i.e., each marker was connected to only a small subset of

other markers. This is highly desirable for purposes of

model tractability and graphical interpretation of high-

dimensional data. The approach avoids assigning pre-

selected thresholds, or performing numerous statistical

independence test to determine which edges should go into

the model.

We considered two implementations of binary Markov

networks: 1) Ravikumar et al. method (Ravikumar et al.

2010) regressed each marker on all others, and 2) Höfling

and Tibshirani’s method (Höfling and Tibshirani 2009)

applied the same degree of sparseness, to estimate all

regression coefficients jointly. The latter procedure pro-

duced a symmetric matrix that is easier to interpret than

that of Ravikumar et al. (2010), which does not optimize a

global likelihood and, hence, it does not ensure symmetry
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of the matrix. Höfling and Tibshirani’s method (Höfling

and Tibshirani 2009) with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p
as a choice

seemed to produce stronger regularization than the method

in Ravikumar et al. (2010). Further, all detected edges were

a subset of those found with the method of Ravikumar

et al. (2010), so a consistent result with respect to sparse-

ness structure was seen. On the other hand, a standard BN

picked up many more edges due to the inability of

excluding weak associations between markers. It is worth

noting that some edges detected by the BN were also

captured in the networks constructed with the two L1-

regularized MN. The resulting networks do not tell the

degree of association between two nodes through a link,

but we assumed that edges that were detected in the BN,

but not in the two L1-regularized Markov networks had a

weak association. Further, identifying whether non-zero

elements in the matrix Ĥ is due to a direct association

between two loci, or to an indirect association via the rest

of the loci was possible by comparing the resulting net-

works with heat maps stemming from pairwise correla-

tions, such as those obtained with the r2 metric. One

possible application of the networks analyzed here might

be selecting tag SNPs unconditionally, as well as condi-

tionally, on other markers when the dimension of the data

is high, e.g., data generated from next generation sequence

technologies.

As shown by Lewontin (1988), there is no clear agree-

ment as to which is the best metric for capturing non-

random association between alleles at pairs of loci, i.e.,

LD. Further, all LD metrics, as well as the networks studied

here, do not reveal the causes of multi-loci associations.

However, there is still room for developing methods for

characterizing a LD. A ’best’ metric would be one that

captures complex associations, and that reflects the

underlying complex genetic architecture properly.

Recently, Gianola et al. (2012) proposed indexes to mea-

sure association among genetic variables via statistical

distances between distributions, based either on the Kull-

back–Leibler logarithmic distance, or on relative distance.

A departure of distributions from stochastic independence

is an indication of association, and this indexes allow to

capture situations where loci are jointly dependent even

though their correlation may be zero. Although our applied

networks depend on a pairwise structure, we attempted to

evaluate LD via probabilistic graphical models, to reflect

the biological expectation that loci associate as a complex

system. Extending to higher-order associations is feasible,

e.g., Ding et al. (2011). Also the methods applied here are

suitable for binary-valued variables only, so it is limited to

assessing LD in inbred lines, where there are only two

possible genotypes. Our approach differs from that of

Thomas and Camp (2004), where they fitted a graphical

model to haplotype data using simulated annealing search

procedure. We used the more familiar regression scheme

and considered sparsity in a network. Note that theoreti-

cally one can obtain a conditional variance or covariance

from a marginal covariance matrix. While indeed this is an

appealing procedure, it still requires use of arbitrary pre-

assigned thresholds to assess whether an association is

significant enough or not.

To summarize, commonly used metrics, such as r2 or the

relevance networks are limited because only marginal,

pairwise, associations are measured. A BN is capable of

further capturing conditional associations among relevant

loci. The L1-regularized Markov networks studied here

preserve this feature of BN, but also delete edges that lack

a strong enough evidence of both unconditional and con-

ditional association. Sparse networks provide a clearer

picture of association, and a sparse graph eases interpre-

tation markedly, because it includes a smaller number of

edges than a BN. As shown here, L1-regularized binary

Markov networks are suited for the n \\ p setting, and

these models are potentially valuable for studying condi-

tional LD from high-dimensional genotype data, where

variables are expected to be sparsely connected.
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Krämer N, Schäfer J, Boulesteix AL (2009) Regularized estimation of

large-scale gene association networks using graphical Gaussian

models. BMC Bioinforma 10:384

Lee SI, Ganapathi V, Koller D (2006) Efficient structure learning of

Markov networks using L1 regularization. In: Proceeding of the

Neural Information Processing Systems

Lewontin RC (1988) On measures of gametic disequilibrium.

Genetics 120:849–852

Lin Y, Zhu S, Lee DD, Taskar B (2009) Learning sparse Markov

network structure via ensemble-of-trees models. In: Proceedings

of the 12th Artificial Intelligence and Statistics, Florida
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